Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 18(3): 16, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35229219

RESUMO

INTRODUCTION: Recent advances in high-throughput methodologies in the 'omics' and synthetic biology fields call for rapid and sensitive workflows in the metabolic phenotyping of complex biological samples. OBJECTIVE: The objective of this research was to evaluate a straightforward to implement LC-MS metabolomics method using a commercially available chromatography column that provides increased throughput. Reducing run time can potentially impact chromatography and therefore the effects of ion mobility spectrometry to expand peak capacity were also evaluated. Additional confidence provided via collision cross section measurements for detected features was also explored. METHODS: A rapid untargeted metabolomics workflow was developed with broad metabolome coverage, combining zwitterionic-phase hydrophilic interaction chromatography (HILIC-Z) with drift tube ion mobility-quadrupole time-of-flight (DTIM-qTOF) mass spectrometry. The analytical performance of our method was explored using extracts from complex biological samples, including a reproducibility study on chicken serum and a simple comparative study on a bacterial metabolome. RESULTS: The method is acronymised RHIMMS for rapid HILIC-Z ion mobility mass spectrometry. We present the RHIMMS workflow starting with data acquisition, followed by data processing and analysis. RHIMMS demonstrates improved chromatographic separation for a selection of metabolites with wide physicochemical properties while maintaining reproducibility at better than 20% over 200 injections at 3.5 min per sample for the selected metabolites, and a mean of 13.9% for the top 50 metabolites by intensity. Additionally, the combination of rapid chromatographic separation with ion mobility allows improved annotation and the ability to distinguish isobaric compounds. CONCLUSION: Our results demonstrate RHIMMS to be a rapid, reproducible, sensitive and high-resolution analytical platform that is highly applicable to the untargeted metabolomics analysis of complex samples.


Assuntos
Espectrometria de Mobilidade Iônica , Metabolômica , Cromatografia Líquida/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Reprodutibilidade dos Testes
2.
Plant J ; 105(6): 1549-1565, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314395

RESUMO

Certain transglucanases can covalently graft cellulose and mixed-linkage ß-glucan (MLG) as donor substrates onto xyloglucan as acceptor substrate and thus exhibit cellulose:xyloglucan endotransglucosylase (CXE) and MLG:xyloglucan endotransglucosylase (MXE) activities in vivo and in vitro. However, missing information on factors that stimulate or inhibit these hetero-transglucosylation reactions limits our insight into their biological functions. To explore factors that influence hetero-transglucosylation, we studied Equisetum fluviatile hetero-trans-ß-glucanase (EfHTG), which exhibits both CXE and MXE activity, exceeding its xyloglucan:xyloglucan homo-transglucosylation (XET) activity. Enzyme assays employed radiolabelled and fluorescently labelled oligomeric acceptor substrates, and were conducted in vitro and in cell walls (in situ). With whole denatured Equisetum cell walls as donor substrate, exogenous EfHTG (extracted from Equisetum or produced in Pichia) exhibited all three activities (CXE, MXE, XET) in competition with each other. Acting on pure cellulose as donor substrate, the CXE action of Pichia-produced EfHTG was up to approximately 300% increased by addition of methanol-boiled Equisetum extracts; there was no similar effect when the same enzyme acted on soluble donors (MLG or xyloglucan). The methanol-stable factor is proposed to be expansin-like, a suggestion supported by observations of pH dependence. Screening numerous low-molecular-weight compounds for hetero-transglucanase inhibition showed that cellobiose was highly effective, inhibiting the abundant endogenous CXE and MXE (but not XET) action in Equisetum internodes. Furthermore, cellobiose retarded Equisetum stem elongation, potentially owing to its effect on hetero-transglucosylation reactions. This work provides insight and tools to further study the role of cellulose hetero-transglucosylation in planta by identifying factors that govern this reaction.


Assuntos
Celulose/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Equisetum/enzimologia , Equisetum/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo
3.
Plant Direct ; 4(8): e00244, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775954

RESUMO

Lima bean, Phaseolus lunatus, is a crop legume that produces the cyanogenic glucosides linamarin and lotaustralin. In the legumes Lotus japonicus and Trifolium repens, the biosynthesis of these two α-hydroxynitrile glucosides involves cytochrome P450 enzymes of the CYP79 and CYP736 families and a UDP-glucosyltransferase. Here, we identify CYP79D71 as the first enzyme of the pathway in P. lunatus, producing oximes from valine and isoleucine. A second CYP79 family member, CYP79D72, was shown to catalyze the formation of leucine-derived oximes, which act as volatile defense compounds in Phaseolus spp. The organization of the biosynthetic genes for cyanogenic glucosides in a gene cluster aided their identification in L. japonicus. In the available genome sequence of P. vulgaris, the gene orthologous to CYP79D71 is adjacent to a member of the CYP83 family. Although P. vulgaris is not cyanogenic, it does produce oximes as volatile defense compounds. We cloned the genes encoding two CYP83s (CYP83E46 and CYP83E47) and a UDP-glucosyltransferase (UGT85K31) from P. lunatus, and these genes combined form a complete biosynthetic pathway for linamarin and lotaustralin in Lima bean. Within the genus Phaseolus, the occurrence of linamarin and lotaustralin as functional chemical defense compounds appears restricted to species belonging to the closely related Polystachios and Lunatus groups. A preexisting ability to produce volatile oximes and nitriles likely facilitated evolution of cyanogenesis within the Phaseolus genus.

4.
Mol Plant ; 13(7): 1047-1062, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376294

RESUMO

Current cell-wall models assume no covalent bonding between cellulose and hemicelluloses such as xyloglucan or mixed-linkage ß-d-glucan (MLG). However, Equisetum hetero-trans-ß-glucanase (HTG) grafts cellulose onto xyloglucan oligosaccharides (XGOs) - and, we now show, xyloglucan polysaccharide - in vitro, thus exhibiting CXE (cellulose:xyloglucan endotransglucosylase) activity. In addition, HTG also catalyzes MLG-to-XGO bonding (MXE activity). In this study, we explored the CXE action of HTG in native plant cell walls and tested whether expansin exposes cellulose to HTG by disrupting hydrogen bonds. To quantify and visualize CXE and MXE action, we assayed the sequential release of HTG products from cell walls pre-labeled with substrate mimics. We demonstrated covalent cellulose-xyloglucan bonding in plant cell walls and showed that CXE and MXE action was up to 15% and 60% of total transglucanase action, respectively, and peaked in aging, strengthening tissues: CXE in xylem and cells bordering intercellular canals and MXE in sclerenchyma. Recombinant bacterial expansin (EXLX1) strongly augmented CXE activity in vitro. CXE and MXE action in living Equisetum structural tissues potentially strengthens stems, while expansin might augment the HTG-catalyzed CXE reaction, thereby allowing efficient CXE action in muro. Our methods will enable surveys for comparable reactions throughout the plant kingdom. Furthermore, engineering similar hetero-polymer formation into angiosperm crop plants may improve certain agronomic traits such as lodging tolerance.


Assuntos
Parede Celular/metabolismo , Celulose/metabolismo , Equisetum/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Equisetum/enzimologia , Glicosiltransferases/metabolismo , Ligação de Hidrogênio
5.
Sci Rep ; 7(1): 15988, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167548

RESUMO

Auxin is a key plant regulatory molecule, which acts upon a plethora of cellular processes, including those related to cell differentiation and elongation. Despite the stunning progress in all disciplines of auxin research, the mechanisms of auxin-mediated rapid promotion of cell expansion and underlying rearrangement of cell wall components are poorly understood. This is partly due to the limitations of current methodologies for probing auxin. Here we describe a click chemistry-based approach, using an azido derivative of indole-3-propionic acid. This compound is as an active auxin analogue, which can be tagged in situ. Using this new tool, we demonstrate the existence of putative auxin binding sites in the cell walls of expanding/elongating cells. These binding sites are of protein nature but are distinct from those provided by the extensively studied AUXIN BINDING PROTEIN 1 (ABP1). Using immunohistochemistry, we have shown the apoplastic presence of endogenous auxin epitopes recognised by an anti-IAA antibody. Our results are intriguingly in line with previous observations suggesting some transcription-independent (non-genomic) activity of auxin in cell elongation.


Assuntos
Parede Celular/metabolismo , Química Click/métodos , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo
6.
Front Plant Sci ; 8: 800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579996

RESUMO

Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars - differing from very early to extra-late in flowering time - and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and ß-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species.

7.
Anal Chem ; 89(8): 4540-4549, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28350444

RESUMO

The lack of robust, high-throughput, and sensitive analytical strategies that can conclusively map the structure of glycans has significantly hampered progress in fundamental and applied aspects of glycoscience. Resolution of the anomeric α/ß glycan linkage within oligosaccharides remains a particular challenge. Here, we show that "memory" of anomeric configuration is retained following gas-phase glycosidic bond fragmentation during tandem mass spectrometry (MS2). These findings allow for integration of MS2 with ion mobility spectrometry (IM-MS2) and lead to a strategy to distinguish α- and ß-linkages within natural underivatized carbohydrates. We have applied this fragment-based hyphenated MS technology to oligosaccharide standards and to de novo sequencing of purified plant metabolite glycoconjugates, showing that the anomeric signature is also observable in fragments derived from larger glycans. The discovery of the unexpected anomeric memory effect is further supported by IR-MS action spectroscopy and ab initio calculations. Quantum mechanical calculations provide candidate geometries for the distinct anomeric fragment ions, in turn shedding light on gas-phase dissociation mechanisms of glycosidic linkages.

8.
BMC Genomics ; 17(1): 1021, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27964718

RESUMO

BACKGROUND: The important cereal crop Sorghum bicolor (L.) Moench biosynthesize and accumulate the defensive compound dhurrin during development. Previous work has suggested multiple roles for the compound including a function as nitrogen storage/buffer. Crucial for this function is the endogenous turnover of dhurrin for which putative pathways have been suggested but not confirmed. RESULTS: In this study, the biosynthesis and endogenous turnover of dhurrin in the developing sorghum grain was studied by metabolite profiling and time-resolved transcriptome analyses. Dhurrin was found to accumulate in the early phase of grain development reaching maximum amounts 25 days after pollination. During the subsequent maturation period, the dhurrin content was turned over, resulting in only negligible residual dhurrin amounts in the mature grain. Dhurrin accumulation correlated with the transcript abundance of the three genes involved in biosynthesis. Despite the accumulation of dhurrin, the grains were acyanogenic as demonstrated by the lack of hydrogen cyanide release from macerated grain tissue and by the absence of transcripts encoding dhurrinases. With the missing activity of dhurrinases, the decrease in dhurrin content in the course of grain maturation represents the operation of hitherto uncharacterized endogenous dhurrin turnover pathways. Evidence for the operation of two such pathways was obtained by metabolite profiling and time-resolved transcriptome analysis. By combining cluster- and phylogenetic analyses with the metabolite profiling, potential gene candidates of glutathione S-transferases, nitrilases and glycosyl transferases involved in these pathways were identified. The absence of dhurrin in the mature grain was replaced by a high content of proanthocyanidins. Cluster- and phylogenetic analyses coupled with metabolite profiling, identified gene candidates involved in proanthocyanidin biosynthesis in sorghum. CONCLUSIONS: The results presented in this article reveal the existence of two endogenous dhurrin turnover pathways in sorghum, identify genes putatively involved in these transformations and show that dhurrin in addition to its insect deterrent properties may serve as a storage form of reduced nitrogen. In the course of sorghum grain maturation, proanthocyanidins replace dhurrin as a defense compound. The lack of cyanogenesis in the developing sorghum grain renders this a unique experimental system to study CNglc synthesis as well as endogenous turnover.


Assuntos
Metaboloma , Metabolômica , Nitrilas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Transcriptoma , Análise por Conglomerados , Cianetos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glutationa Transferase/metabolismo , Metabolômica/métodos , Filogenia , Proantocianidinas/metabolismo , Sementes/genética , Sementes/metabolismo , Sorghum/classificação , Sorghum/crescimento & desenvolvimento
9.
Glycobiology ; 26(5): 430-42, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26848180

RESUMO

Apiose is a unique branched-chain pentose found principally in plants. It is a key component of structurally complex cell wall polysaccharides, as well as being present in a large number of naturally occurring secondary metabolites. This review provides a comprehensive overview of the current state of knowledge on the metabolism and natural occurrence of apiose, using cyanogenic glycosides and their related compounds as a case study. The biological function of apiose and of apiosylated compounds is discussed.


Assuntos
Parede Celular/metabolismo , Pentoses/metabolismo , Plantas/metabolismo , Parede Celular/química , Pentoses/química , Plantas/química
10.
Plant Mol Biol ; 89(1-2): 21-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26249044

RESUMO

Flowers and leaves of Lotus japonicus contain α-, ß-, and γ-hydroxynitrile glucoside (HNG) defense compounds, which are bioactivated by ß-glucosidase enzymes (BGDs). The α-HNGs are referred to as cyanogenic glucosides because their hydrolysis upon tissue disruption leads to release of toxic hydrogen cyanide gas, which can deter herbivore feeding. BGD2 and BGD4 are HNG metabolizing BGD enzymes expressed in leaves. Only BGD2 is able to hydrolyse the α-HNGs. Loss of function mutants of BGD2 are acyanogenic in leaves but fully retain cyanogenesis in flowers pointing to the existence of an alternative cyanogenic BGD in flowers. This enzyme, named BGD3, is identified and characterized in this study. Whereas all floral tissues contain α-HNGs, only those tissues in which BGD3 is expressed, the keel and the enclosed reproductive organs, are cyanogenic. Biochemical analysis, active site architecture molecular modelling, and the observation that L. japonicus accessions lacking cyanogenic flowers contain a non-functional BGD3 gene, all support the key role of BGD3 in floral cyanogenesis. The nectar of L. japonicus flowers was also found to contain HNGs and additionally their diglycosides. The observed specialisation in HNG based defence in L. japonicus flowers is discussed in the context of balancing the attraction of pollinators with the protection of reproductive structures against herbivores.


Assuntos
Cianetos/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Lotus/fisiologia , beta-Glucosidase/fisiologia , Sequência de Aminoácidos , Celulases/análise , Celulases/genética , Celulases/fisiologia , Flores/química , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glucosídeos/análise , Herbivoria , Lotus/genética , Dados de Sequência Molecular , Nitrilas/análise , Folhas de Planta/química , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/genética , beta-Glucosidase/genética
11.
Biochem J ; 469(3): 375-89, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26205491

RESUMO

Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic hydrogen cyanide (HCN) upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and high resolution MS (HR-MS) complemented by ion-mobility MS was carried out in three cyanogenic plant species: cassava, almond and sorghum. In total, the endogenous formation of 36 different chemical structures related to the cyanogenic glucosides linamarin, lotaustralin, prunasin, amygdalin and dhurrin was discovered, including di- and tri-glycosides derived from these compounds. The relative abundance of the compounds was assessed in different tissues and developmental stages. Based on results common to the three phylogenetically unrelated species, a potential recycling endogenous turnover pathway for cyanogenic glycosides is described in which reduced nitrogen and carbon are recovered for primary metabolism without the liberation of free HCN. Glycosides of amides, carboxylic acids and 'anitriles' derived from cyanogenic glycosides appear as common intermediates in this pathway and may also have individual functions in the plant. The recycling of cyanogenic glycosides and the biological significance of the presence of the turnover products in cyanogenic plants open entirely new insights into the multiplicity of biological roles cyanogenic glycosides may play in plants.


Assuntos
Glicosídeos/metabolismo , Manihot/metabolismo , Prunus/metabolismo , Sorghum/metabolismo , Glicosídeos/química , Cianeto de Hidrogênio/metabolismo , Manihot/química , Manihot/genética , Metabolômica , Estrutura Molecular , Prunus/química , Prunus/genética , Sorghum/química , Sorghum/genética , Espectrometria de Massas em Tandem
12.
Mol Biotechnol ; 54(3): 996-1003, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23475593

RESUMO

Escherichia coli strains expressing different nitrilases transformed nitriles or KCN. Six nitrilases (from Aspergillus niger (2), A. oryzae, Neurospora crassa, Arthroderma benhamiae, and Nectria haematococca) were arylacetonitrilases, two enzymes (from A. niger and Penicillium chrysogenum) were cyanide hydratases and the others (from P. chrysogenum, P. marneffei, Gibberella moniliformis, Meyerozyma guilliermondi, Rhodococcus rhodochrous, and R. ruber) preferred (hetero)aromatic nitriles as substrates. Promising nitrilases for the transformation of industrially important substrates were found: the nitrilase from R. ruber for 3-cyanopyridine, 4-cyanopyridine and bromoxynil, the nitrilases from N. crassa and A. niger for (R,S)-mandelonitrile, and the cyanide hydratase from A. niger for KCN and 2-cyanopyridine.


Assuntos
Aminoidrolases/química , Genoma Fúngico , Hidroliases/química , Aminoidrolases/genética , Aminoidrolases/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/genética , Genômica , Hidroliases/genética , Hidroliases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
13.
BMC Genomics ; 13: 445, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22943411

RESUMO

BACKGROUND: The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. RESULTS: Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. CONCLUSIONS: The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have overcome the stress condition. Here we propose a model of the regulation of oxidative and heat stress response including redox homeostasis by SigH, RshA and the thioredoxin system.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Fator sigma/genética , DNA Bacteriano/genética , Deleção de Genes , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Regulon , Análise de Sequência de DNA , Transcrição Gênica
14.
J Ind Microbiol Biotechnol ; 39(12): 1811-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22922990

RESUMO

The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.


Assuntos
Amidoidrolases/metabolismo , Herbicidas/metabolismo , Hidroliases/metabolismo , Nitrilas/metabolismo , Rhodococcus/metabolismo , Amidas/metabolismo , Amidas/toxicidade , Benzamidas/metabolismo , Biotransformação , Herbicidas/química , Hidrólise , Iodobenzenos/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Nitrilas/química , Nitrilas/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...